Цифровая схемотехника Синтез логических схем

КУРС ЛЕКЦИЙ

ЧУ ПО «СОЦИАЛЬНО-ТЕХНОЛОГИЧЕСКИЙ КОЛЛЕДЖ» ПРЕПОДАВАТЕЛЬ: БОРИСОВ АЛЕКСЕЙ АЛЬБЕРТОВИЧ

- 1. Функции двух переменных
- 2. Законы алгебры логики
- 3. Представление логических функций
- 4. СДНФ, СКНФ
- 5. Минтермы, макстермы
- 6. Минимизация логических функций
- 7. Карты Карно
- 8. Синтез схем по заданной функции

Функции двух переменных

a	1	0	1	0	Логическое	
b	1	_	0	•	выражение $f(a,$	Наименование
	1	•	Ü	Ü	b)	1141111121112
0	0	0	0	0	$f_0 = 0$	константа 0
1	0	0	0	1	$f_1 = \overline{a \vee b}$	операция ИЛИ- НЕ, стрелка Пирса
2	0	0	1	0	$f_2 = a \wedge \overline{b}$	запрет по b
3	1	0			$f_3 = \overline{b}$	инверсия <i>b</i>
4	0	1	0	0	$f_4 = \overline{a} \wedge b$	запрет по а
5	0	1	0	1	$f_5 = \overline{a}$	инверсия <i>а</i>
6	0	1	1	0	$f_6 = a\overline{b} \vee \overline{a} b$ $f_7 = \overline{a \wedge b}$	исключающее ИЛИ, неравнозначность
7		1			$f_7 = \overline{a \wedge b}$	операция И – НЕ, штрих Шеффера
8	1	0	0	0	$f_8 = a \wedge b$	конъюнкция, логическое И
9	1	0	0	1	$f_8 = a \wedge b$ $f_9 = a \ b \vee \overline{a} \ \overline{b}$	равнозначность, эквивалентность
10	1	0	1	0	$f_{10} = a$	переменная а
11		0		1	$f_{11} = a \vee \overline{b}$	импликация от b к a
12					$f_{12} = b$	переменная b
13	1	1	0	1	$f_{13} = \overline{a} \vee b$	импликация от a к b .
14	1	1	1	0	$f_{14} = a \vee b$	дизъюнкция, логическое ИЛИ
15	1	1	1	1	$f_{15} = 1$	константа 1

Законы алгебры логики

В алгебре логики установлен целый ряд законов, с помощью которых возможно преобразование логических функций (ЛФ):

Конъюнкция: И, ^, &, * Дизъюнкция: ИЛИ, [∨], |, +

• коммутативный (переместительный)

$$X \wedge Y = Y \wedge X$$
 $X \vee Y = Y \vee X$

• ассоциативный (сочетательный)

$$(X \& Y) \& Z=(X \& Z) \& Y=X \& (Y \& Z)$$
 $(X | Y) | Z=(X | Z) | Y=X | (Y | Z)$

• дистрибутивный (распределительный)

$$X \& (Y | Z) = X \& Y | X \& Z$$
 $X | Y \& Z = (X | Y) \& (X | Z)$

• Закон свёртки

$$X \mid \overline{X}F = X \mid F$$
 $X(\overline{Y} \mid F) = XF$

Где F - логическая функция общего вида, не зависящая от переменных

Законы алгебры логики

В алгебре логики установлен целый ряд законов, с помощью которых возможно преобразование логических функций (ЛФ):

• Закон поглощения

$$X \mid XY = X$$

$$X \mid XY = X$$
 $X(X|Y) = X$

• Закон склеивания

$$XY \mid X\overline{Y} = X$$

$$XY \mid X\overline{Y} = X$$
 $(X \mid Y)(X \mid \overline{Y}) = X$

$$FX \mid F\overline{X} = F$$

$$FX \mid F\overline{X} = F$$
 $(X \mid F)(\overline{X} \mid F) = X$

• Правило де Моргана

$$\overline{X \mid Y} = \overline{X} \& \overline{Y}$$
 $\overline{X} \& \overline{Y} = \overline{X} \mid \overline{Y}$

$$\overline{X \& Y} = \overline{X} | \overline{Y}$$

Где F - логическая функция общего вида, не зависящая от переменных

Представление логических функций (ЛФ)

3 способа представления логических функций:

- 1. графиком (в виде временной диаграммы напряжения);
- 2. аналитическим (булевым выражением);
- 3. таблицей истинности.

В аналитическом виде ЛФ может быть представлена различными сочетаниями операций сложения и умножения переменных. Однако наиболее удобно представлять ЛФ в двух формах записи:

1) как суммы произведений переменных:

$$Y + \overline{X}Y + X\overline{Y}Z + \overline{X}Y\overline{Z}$$

Такая запись функции называется дизъюнктивной нормальной формой (ДНФ).

2) как произведения сумм переменных:

$$Y(\overline{X} + Y)(X + \overline{Y} + Z)(\overline{X} + Y + \overline{Z})$$

Такая запись функции называется конъюнктивной нормальной формой (КНФ).

Переход от одной формы записи функции к другой осуществляется инверсией функции по теореме де Моргана. Например, логическая функция дана в ДНФ:

$$F = Y + \overline{X}Y + X\overline{Y}Z$$

$$\overline{X \cdot Y} = \overline{X} \cdot \overline{Y}$$

$$\overline{X \cdot Y} = \overline{X} + \overline{Y}$$

Инвертируем и получаем функцию в КНФ:

$$\overline{F} = \overline{Y + \overline{X}Z + X\overline{Y}Z} = (\overline{Y})(\overline{\overline{X}Z})(\overline{X}\overline{Y}Z) = \overline{Y}(X + \overline{Z})(\overline{X} + Y + \overline{Z}).$$

Пользуясь законами логики, можно любую ЛФ преобразовать к ДНФ и КНФ. Для одной и той же ЛФ может существовать несколько равносильных дизъюнктивных и конъюнктивных форм. Однако существует только один вид ДНФ и КНФ, в которых функция может быть записана единственным образом – это совершенные нормальные формы.

В совершенной дизъюнктивной нормальной форме (СДНФ) каждое слагаемое содержит произведение всех переменных и/или их отрицаний и нет одинаковых слагаемых.

В *совершенной конъюнктивной нормальной форме (СКНФ)* каждый сомножитель содержит суммы всех переменных и/или их отрицаний и нет одинаковых сомножителей.

Наиболее наглядно и полно логическая функция представляется таблицей истинности. Переход от аналитического выражения ЛФ к таблице истинности осуществляется определением значения функции для всех вариантов сочетания значений переменных функции (т.е. методом перебора).

№ комб.	Х	Y	Z	F
1	0	0	0	0
2	0	0	1	1
3	0	1	0	1
4	0	1	1	0
5	1	0	0	0
6	1	0	1	0
7	1	1	0	1
8	1	1	1	0

Рассмотрим на примере переход от табличной формы представления функции к аналитической записи ее в СДНФ или СКНФ.

Пусть функция задана таблицей истинности.

Функция F=1 (истинна) в комбинациях переменных 2,3,7.

$$\overline{X}\overline{Y}Z = 1$$
, $\overline{X}Y\overline{Z} = 1$, $XY\overline{Z} = 1$

Комбинации переменных, при которых функция истинна называют минтермами.

Функция в СДНФ есть сумма комбинаций переменных, при которых функция истинна, т.е.

$$F = \overline{X}\overline{Y}Z + \overline{X}Y\overline{Z} + XY\overline{Z}$$

Функцию можно представить не только единичными, но и нулевыми значениями.

Функция
$$F=0$$
 (ложна) или $\overline{F}=1$, если

$$\overline{X}\overline{Y}\overline{Z} = 0$$
, $\overline{X}YZ = 0$, $X\overline{Y}\overline{Z} = 0$, $X\overline{Y}Z = 0$, $XYZ = 0$.

$$\overline{F} = \overline{X}\overline{Y}\overline{Z} + \overline{X}YZ + X\overline{Y}\overline{Z} + X\overline{Y}Z + XYZ.$$

Воспользовавшись теоремой де Моргана, получаем функцию в СКНФ:

$$F = (X + Y + Z)(X + \overline{Y} + Z)(\overline{X} + Y + Z)(\overline{X} + Y + \overline{Z})(\overline{X} + \overline{Y} + \overline{Z}).$$

Минимизация логических функций

Сложность логической функции, а отсюда сложность и стоимость реализующей ее схемы (цепи), пропорциональны числу логических операций и числу вхождений переменных или их отрицаний. Поэтому более целесообразно использовать специальные алгоритмические методы минимизации, позволяющие проводить упрощение функции более просто, быстро и безошибочно. К таким методам относятся, например,

метод Квайна, метод карт Карно, метод испытания импликант, метод импликантных матриц, метод Квайна-Мак-Класки и др.

Эти методы наиболее пригодны для обычной практики, особенно минимизация логической функции с использованием карт Карно. Метод карт Карно сохраняет наглядность при числе переменных не более шести. В тех случаях, когда число аргументов больше шести, обычно используют метод Квайна-Мак-Класки.

Методы минимизации логических функций

Минимизация — упрощение формы записи логической функции, направленное на устранение избыточности в записи функции.

При синтезе логических схем минимизированная функция реализуется с наименьшим числом логических элементов.

Минимизация производится:

- 1. алгебраическими способами;
- 2. методом карт Карно.

1. Использование законов булевой алгебры:

- а) добавление существующих слагаемых: X + X + X = X;
- б) умножение отдельных слагаемых на функцию вида: $X + \overline{X} = 1$;
- в) выделение слагаемых вида: $X + \overline{X} = 1$.

Пример.

$$\overline{X}YZ + X\overline{Y}Z + XY\overline{Z} + XYZ = \overline{X}YZ + \underline{X}\overline{Y}Z + \underline{X}Y\overline{Z} + \underline{X}YZ = \underline{X}YZ + \underline{X}YZ$$

Преобразование алгебраическими способами требует громоздких математических выкладок и больших временных затрат. Существуют приемы, основанные на правилах алгебры логики, позволяющие минимизировать функцию более быстро и просто (и даже безошибочно!)

Минимизация логических функций при помощи карт Карно

Карта Карно — графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок.

Представляет собой операции попарного неполного склеивания и элементарного поглощения. Карты Карно рассматриваются как перестроенная соответствующим образом таблица истинности функции. Карты Карно можно рассматривать как определенную плоскую развертку n-мерного булева куба.

В карту Карно булевы переменные передаются из таблицы истинности и упорядочиваются с помощью кода Грея, в котором каждое следующее число отличается от предыдущего только одним разрядом.

Карты Карно были изобретены в 1952 Эдвардом В. Вейчем и усовершенствованы в 1953 Морисом Карно, физиком из «Bell Labs».

Методы минимизации логических функций

2. Метод карт Карно (или диаграммы Вейча)

Метод используется для минимизаций функций с числом переменных до 5-6.

Карты Карно представляют собой таблицу, в которую заносятся значения всех возможных комбинаций переменных.

Количество полей в таблице составляет 2^n , где n – количество переменных.

«1» - прямое значение переменной; «0» - инверсное значение переменной.

$$B \begin{cases} 0 & \overline{A} \overline{B} & A \overline{B} \\ 1 & \overline{A} B & A B \end{cases}$$

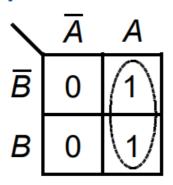
Карта Карно из двух переменных

Правила записи карты Карно

- 1. Разметка вертикальной оси не зависит от разметки горизонтальной.
- 2. Разметку осей можно начинать с любого сочетания переменных.
- 3. По каждой оси должны быть перечислены все сочетания переменных.
- 4. Карта составляется таким образом, чтобы соседние клетки отличались только одной переменной. Соседними клетками также считаются крайние клетки каждого столбца или строки.

Методы минимизации логических функций

Пример 1.
$$F = AB + A\overline{B}$$



Для каждого сочетания переменных *AB* в соответствующую ячейку пишется «1». В незаполненные клетки – «0». Соседние единицы объединяем в один контур по 2 или 4 или 8 единиц.

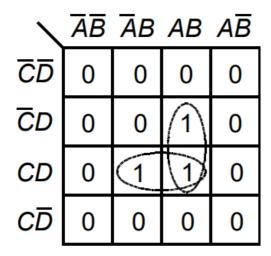
Каждый контур – член упрощенного булева выражения.

В примере имеется 1 контур. Это означает, что новое минимизированное выражение будет состоять из одного члена.

В контуре встречается комбинация с B u \overline{B} , в соответствии с правилами булевой алгебры B u \overline{B} дополняют друг друга и их можно опустить, т.е. $(B+\overline{B})=1$. Т.о. $F=AB+A\overline{B}=A(B+\overline{B})=A$.

Ответ: F = A.

Пример 2. $F = AB\overline{C}D + \overline{A}BCD + ABCD$



Карта Карно из четырех переменных

На карте имеется два контура, следовательно новое минимизированное выражение будет состоять из двух членов, связанных функцией ИЛИ.

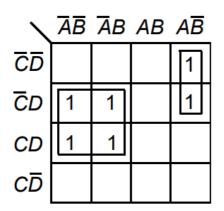
В горизонтальном контуре опускаем $(A + \overline{A})=1$; в вертикальном контуре опускаем $(C + \overline{C})=1$. Ответ: F = BCD + ABD.

В итоге, получили функцию, форма которой не подлежит дальнейшей минимизации и называется тупиковой.

Правила использования карт Карно

- 1. Нанести на карту Карно единицы в соответствии с заданной функцией (логическая функция должна быть представлена в СДНФ).
- 2. Объединяем соседние единицы контурами по 2, 4 или 8 клеток.
- 3. Проводим упрощения, исключая взаимодополняющие переменные внутри контура
- 4. Оставшиеся члены объединяем функцией ИЛИ. Полученное выражение записываем в ДНФ.

Методы минимизации логических функций



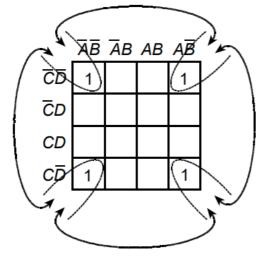
Пример 3.

$$F = A\overline{B}\overline{C}\overline{D} + \overline{A}B\overline{C}D + \overline{A}\overline{B}\overline{C}D + \overline{A}\overline{B}CD + \overline{A}BCD + A\overline{B}\overline{C}D$$

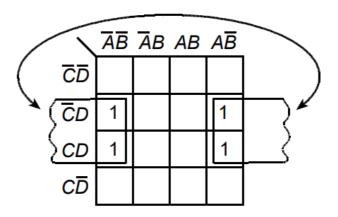
Объединяем в два контура по 2 и 4 единицы.

Результат минимизации: $F = \overline{A}D + A\overline{B}\overline{C}$

Существуют также нестандартные способы построения контуров.



F=BD.Здесь опускаются A и \overline{A} и C и \overline{C} .



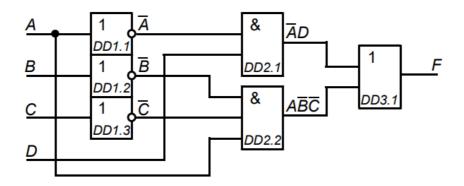
$$F = \overline{B}D.$$

Здесь опускаются C и \overline{C} и A и \overline{A} .

Синтез электронных схем по заданной функции

В результате минимизации: $F = \overline{A}D + A\overline{B}\overline{C}$

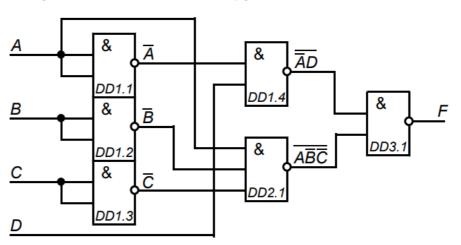
1. Реализация ЛФ в смешанном базисе.



2. Реализация ЛФ в базисе И-НЕ.

Преобразуем функцию к виду, в котором будет использоваться функция И-НЕ.

$$F = \overline{F} = \overline{\overline{AD} + ABC} = \overline{\overline{AD} \cdot \overline{ABC}}$$

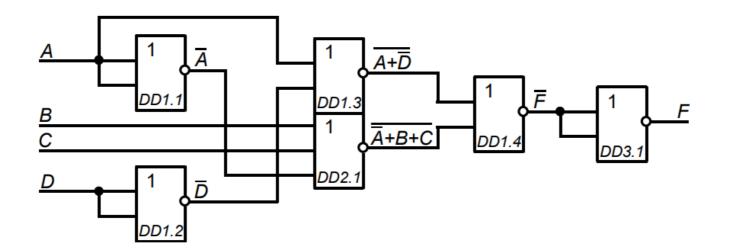


Синтез электронных схем по заданной функции

3. Реализация ЛФ в базисе ИЛИ-НЕ.

Преобразуем функцию к виду, где используется только логическая функция ИЛИ-НЕ.

$$F = \overline{AD} + A\overline{B}\overline{C} = \overline{\overline{F}} = \overline{\overline{AD} \cdot A\overline{B}\overline{C}} = \overline{(A + \overline{D})(\overline{A} + B + C)} = \overline{(A + \overline{D})} + \overline{(\overline{A} + B + C)}$$



Спасибо за внимание

ЧУ ПО «Социально-технологический колледж»

Преподаватель: Борисов Алексей Альбертович